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Introduction
The female reproductive tract consists of a series of cavities lined 

by a highly vascular and glandular tissue called the mucosa. Mucosal 
tissues, nonkeratinized epithelia derived mainly of endoderm lined in 
epithelium, cover the surfaces of numerous body cavities, providing a 
moist interior lining which provides a hospitable habitat for a rich and 
dynamic microflora. 

The mucosa of the female reproductive tract is unique in that 
even though it must, like all mucosal surfaces, maintain a vigilant 
and vigorous immunity against pathogenic intruders [1], it must 
also maintain an environment favorable to the reproductive process, 
tolerating the presence of allogeneic spermatozoa in the vagina, 
permitting their migration to the Fallopian tubes, and facilitating 
implantation of the semi-allogeneic fertilized ovum [2].  

The ultimate goal of the lower female genital tract immune system 
is thus to effectively combat pathogens while at the same time modulate 
immune function in order to optimize fertility [3]. This delicate balance 
is accomplished by a complex interplay of local humoral, cell-mediated, 
and innate immunity [3]. 

Innate immune system defenses do not recognize single microbial 
epitopes and can therefore eliminate microorganisms rapidly, 
without the 3 to 5-day delay involved in mounting an antigen-specific 
response [4].  Bacterial cells or components of bacterial cell walls 
are nonspecifically recognized by innate immune factors which then 
eliminate the potential pathogens by multiple mechanisms, including 
antimicrobial factors secreted by local epithelial cells, ingestion by 
resident phagocytes, and activation of an inflammatory response [4]. 

Innate defenses, while common to all women, can nonetheless vary. 
Genetic polymorphisms specific to individual hosts can compromise 
the ability to mount an effective innate immune response in the vagina 
and thus increase susceptibility to sexually transmitted diseases [5]. 
For example, variations in the ability to produce adequate levels of 
interleukin-1 receptor antagonist and Toll-like receptor (TLR)-4 
have been shown to influence the bacterial composition of the vagina 
[6,7]. Observed racial differences in composition of the endogenous 
microflora may also be attributable to the incidence of genetic 
polymorphisms in a given population [8]. 

Adaptive immune processes in the lower genital tract involve both 
B and T lymphocytes and their products, which recognize specific 
components of individual microorganisms [9]. 

Humoral immunity consists of B  cells that secrete antibodies. 
Antibodies bind to microbial cells (thus preventing their entry into 
host cells), coat pathogens to induce phagocytosis, and stimulate other 
immune responses such as the complement pathway [10]. Components 
of humoral immunity are displayed in Table 1. 

Cell-mediated immunity consists of various subsets of T 
lymphocytes which act in conjunction with other cytotoxic cells. Cell-
mediated immunity in the lower genital tract eliminates primarily 
intracellular bacteria as well as virus-infected and tumor cells either by 
stimulating phagocytosis or by the direct action of cytotoxic, or natural 
killer (NK) and antibody-dependent killer (K) cells. Cytotoxic T cells 
(CD8+) kill virus-infected cells; stimulatory cells (CD4+) activate other 
types of cells including macrophages and B cells [9]. Components of 
cell-mediated immunity are displayed in Table 2. 

Mucosa of the Female Reproductive Tract
The female reproductive tract is subdivided into three major 

compartments: the lower genital tract (comprised of the vagina and 
cervix), the transitional endocervix, and the upper genital tract 
(comprised of the endometrium and the Fallopian tubes) [11]. The 
lower reproductive tract is populated by a rich commensal microflora, 
abundant in anaerobic microbes [12], which blanket the surface of 
the vagina and ectocervix and assist in limiting the growth of more 
virulent microorganisms [1]. In most healthy reproductive age women, 
this population is dominated by Lactobacillus or other acid-producing 
species [8,11,13,14]. 
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Abstract
The moist, nonkeratinized surfaces of mucosal tissues face a significant challenge with regard to protection of 

internal tissues from pathogenic invaders, a situation augmented by the fact that these sites are colonized by commensal 
microorganisms. The mucosa of the human reproductive tract is unique in that it must also balance the need for 
immunologic vigilance against pathogenic microorganisms and neoplastic cells with its critical role in reproduction, 
successfully creating an immune environment that tolerates allogeneic spermatozoa as well as the semi-allogeneic 
developing fetus. This article reviews the components of innate immunity that are functional in the cervicovaginal 
environment.
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The mucosal surface of the female genital tract is an intricate and 
dynamic biosystem containing multiple innate and acquired immune 
system components that provide an effective barrier to external 
pathogens and is therefore adapted in each area of the genital tract to 
the particular local needs. The endometrium as well as the endocervix 
is lined by a single-cell layered columnar epithelium which secretes 
mucus. Endocervical tubular glands and deep invaginations of the 
surface epithelium increase the surface area available for mucus-
producing cells [15]. The secretory activity of the endocervical glands is 
regulated by estrogens [16]. 

The endocervix is a transition zone, where the columnar epithelium 
of the endometrium and endocervix meets the squamous epithelium of 
the cervix, the entry to the lower genital tract. The cervix as well as the 
ectocervix is lined by non-keratinized, stratified, squamous epithelium 
that sits atop a thick lamina propria and vascular submucosa and that 
continues into the vaginal epithelial layer. 

The vaginal wall consists of three layers, an inner layer of fibrous 
connection tissue, a middle muscular layer, and an outer layer of 
mucosa, lubricated by secretions of the cervical glands. 

The vaginal mucosa, in contrast to other mucosal surfaces that 
contain squamous epithelia that began as columnar in the developing 
fetus, lacks subdermal secretory glands; nevertheless it maintains 
significant secretory capacity through a network of intercellular 
pathways, making the entire vaginal surface a secretory structure [17]. 
The epithelial cells of the vagina also contain large numbers of estrogen 

receptors which respond to estrogen stimulation [16]. The ectocervix is 
structurally and immunologically similar to the vagina.

Throughout the female genital tract a mucus blanket coats the 
nonkeratinized epithelia, providing a formidable semi-permeable 
protective barrier to the exposed epithelial surface [18].

Components of Innate Immunity in the Female Genital 
Tract
Epithelial cells barrier

Organisms which manage to navigate their way through the 
mucus blanket that covers the vaginal surface will eventually reach the 
vaginal epithelia. The maturation and proliferation of the epithelium 
is under hormonal control, with maximum thickness occurring 
during peak levels of circulating estrogen [19]. In addition, the lower 
reproductive tract mucosa is unique in that it is responsive to both 
the direct and indirect effects of sex hormones. It responds directly 
to estrogen stimulation as well as to the cytokines and growth factors 
also stimulated by estrogen and produced by fibroblasts and migratory 
cells in the reproductive tract, enabling the lower female genital tract 
to exquisitely balance both immune and reproductive functions [20]. 

The cervicovaginal epithelium, together with its tissue-associated 
phagocytes (macrophages and neutrophils), represent the first line of 
cellular microbial defense to provide a physical and chemical barrier 
and act as sentinels, inducing other immune responses through 
the production of cytokines and chemokines [9]. Epithelia play an 

Antibody Source Action

IgA Secretory IgA produced by mucosal tissues and 
fallopian tubes [67]

Inhibits microbial adherence to surfaces 
Agglutinating resident microbes [68,69]
Reducing the hydrophobic nature of the microbes [70] 
Blocking microbial adhesions [71] 
Rendering viruses ineffective. Aggregating virus particles [72] 
Neutralizing microbial toxins and enzymes.  Blocking binding to target cells [73]    
Inhibiting penetration of antigen into the mucosa.  Binding soluble antigens and facilitating removal by 
mucus flow [68] 
Opsonization of microbes for mucosal phagocytes.  Coating pathogen with IgA [68] 
Stimulating antibody-assisted cell-mediated immunity.  Inducing complement-independent antibacterial 
action of monocytes [74] 
Augmenting T-cell antimicrobial activity (specifically against T cells) [75]
Promoting activity of innate immunity [76]
Increasing microbe trapping of mucin by mimicking microbe receptor sites [77]

IgG
Transudate from blood stream [67] 
Actively transported [78]
Locally produced [79]

Direct action against bacteria and viruses.  Immune exclusion of HIV particles [80]; binding, 
agglutination of bacteria,  complement activation [81]    

Ig = immunoglobulin

Table 1: Components of Humoral Immunity in the Lower Female Reproductive Tract.

FGT = female genital tract; NK = natural killer

Table 2: Components of Cell-Mediated Immunity in The Female Lower Reproductive Tract.

Cell Type Distribution Action
Langerhans/ 
dendritic cells Abundant in vaginal and cervical mucosa Present antigen to T cells (adaptive); phagocytize bacteria or virus 

particles (innate) [11]
Neutrophils Abundant throughout female genital tract Produce antipathogenic chemokines and cytokines (innate) [50]
T cells 

•	 CD8+
•	 CD4+

Abundant within mucosal-associated lymphoreticular tissue within the 
lamina propria of cervix

Direct cytotoxic action(innate) or stimulation of other immune responses 
(adaptive) [11]

Most common epithelial T cells in FGT, cytotoxic Kill virus- infected cells (adaptive) [82]
Less common, Stimulatory Activate macrophages, B cells (adaptive) [82]   

NK cells Throughout FGT Kill virus-infected host cells (adaptive and innate mechanisms) [83] 

Macrophages Abundant within mucosal-associated lymphoreticular tissue within lamina 
propria of cervix; most abundant phagocytes Present antigen to T cell (adaptive) [11]
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important role in innate immunity by 1) providing a mechanical barrier 
to pathogen entry, 2) inducing death of infected cells by necrosis, 
apoptosis, or phagocytosis, 3) releasing protective cytotoxic substances, 
4) producing a wide variety of signals of cell injury (e.g., chemokines, 
cytokines, prostaglandins, heat shock proteins) that both attract and 
activate leukocytes, 5) initiating and amplifying an acute inflammatory 
reaction, and 6) activating both humoral and cell-mediated immunity 
[12]. 

Rapid innate defenses against microbial infection necessitate a 
broadly specific recognition of invading bacteria, fungi, parasites, 
and viruses as well as endogenous ligands associated with cell damage 
[12]. Epithelial cells recognize specific patterns in the arrangement 
of conserved key molecules on the surface called microbe-associated 
molecular patterns (MAMPs) which include lipopolysaccharide 
(LPS), lipoproteins, peptidoglycans, lipoarabinomannans and 
oligosaccharides.

The MAMPs are recognized by pattern recognition receptors 
(PRRs) which are widespread on a wide variety of immune cells, 
particularly those involved in innate immunity (macrophages, 
neutrophils, dendritic cells) [4], but are also found throughout the 
mucosal epithelium [21]. One family of PRRs called Toll-like receptors 
(TLRs) play an important role in innate immunity [12]. Ligation of 
TLR by microbial products results in induction of an inflammatory 
immune response characterized by the production of cytokines and 
antimicrobial factors and resulting in facilitation of adaptive immune 
responses [22]. 

Toll-like receptors are transmembrane proteins which have in 
common similar structures All TLRs include first a cytoplasmic 
signaling domain. This domain is separated by a single, membrane-
spanning domain from a third domain, a ligand-recognition domain. 
The ligand-recognition domain contains 19 to 25 copies of leucine-rich 

repeats, and provides a highly specific binding surface for the cognate 
ligand [23]. 

Ten different TLR receptors have been identified in the lower 
genital tract of human females; each responds specifically to a distinct 
MAMP [24]. TLRs are designed to recognize, with high specificity, 
various proteins, lipids, carbohydrates, and nucleic acids of invading 
microorganisms and are typically located on either plasma membranes 
or intracellularly. (Table 3) Recognition produces a rapid response by 
activating signaling cascades that trigger immune and inflammatory 
responses involving the production of pro-inflammatory mediators 
[25] and activation of the acquired immune response (both humoral 
and cell-mediated) [26]. 

Expression of TLRs, however, vary widely at different sites in the 
lower genital tract. Endometrial epithelial cells express TLRs 1-6, and 
9; endocervical cells express TLRs 1-3, and 6 but not 4 or 5. TLRs 2 and 
4 levels of expression vary widely. TLR 4 is not expressed by cervical or 
vaginal epithelial cells [27]. These studies suggest that the differential 
expression of Toll-like receptors in the female reproductive tract may 
be distributed in such a way as to maintain commensal microbial 
populations [28].  

TLR expression is modulated by estrogen levels, with higher levels 
of expression of TLRs 2, 3, 4, 5, 6 , and 9 during the secretory phase as 
compared to other phases [12,29]. It has also been observed that the 
declining levels of estrogen after menopause are associated with a loss 
of TLR expression [30]. 

Although each TLR has a specific ligand, together they are 
collectively able to respond to a wide variety of bacterial, viral, fungal, 
and parasitic components. TLRs mediate the activation of epithelial 
cells by microbial products and may also regulate expression of 
antimicrobial peptides by epithelial cells [31]. The cervicovaginal 

ds = double-stranded; LPS = lipopolysaccharide; NK = natural killer; PGN = peptidoglycan; RNA = ribonucleic acid; ss = single-stranded; TLR = toll-like receptor

Table 3: Role of Toll-Like Receptors in the Lower Female Reproductive Tract.

Receptor Number Expression Recognition site Target Organism

TLR 1
Constitutive expression in epithelial cells of fallopian tubes, endometrium 
endocervix, ectocervix, vagina, uterine NK cells, vascular endothelial cells, 
and smooth muscle cells in cervical stroma as well as uterus [12] 

LPS, PGN, flagellin Bacteria [60,84]

TLR 2 
Constitutive expression in epithelial cells of fallopian tubes, endometrium, 
cervix, vagina, smooth muscle cells of cervix and vagina, endometrial stromal 
cells, uterine NK cells. Highest levels in fallopian tubes and cervix [12]  

LPS, PGN, flagellin (heterodimers in TLR1 or 
TLR6 complexes recognize microbial components) Bacteria [85,86]

TLR 3 

Constitutive expression in tissue samples from fallopian tubes, 
endometrium, cervix, and vagina. Other expression in epithelial cells of 
fallopian tubes, endometrium endocervix, ectocervix, and vagina. Also in 
stromal fibroblasts of vagina, endocervix and in  uterine NK cells [12] 

Nucleic acids  
(ds RNA) Virus[60,87]

TLR 4 
Constitutive expression in fallopian tubes, endometrium cervix, vagina, 
declines from fallopian tubes to vagina, although presence in epithelial cells 
debated [12] 

LPS, heat shock protein 60, 
glycoinositolphospholipids of protozoa, viral 
envelope proteins, activates NK and other immune 
response [84]

Bacteria, Virus 
[84] 

TLR 5 Constitutive expression in epithelial cells of fallopian tubes, endometrium, 
vagina, endocervix [12] flagellin Bacteria [88]

TLR 6 
Constitutive expression in epithelial cells of fallopian tubes, endometrium, 
endocervix, ectocervix, vagina, uterine NK cells and stroma fibroblasts in 
vagina [12] 

LPS, PGN, flagellin Bacteria [12] 
Fungi [60] 

TLR 7 Constitutive expression in epithelial cells of fallopian tubes, endometrium, 
cervix, vagina, uterine NK cells and endometrial stroma [12] Nucleic acid (ss RNA) Virus [23,89]

TLR 8 Constitutive expression in epithelial cells of fallopian tubes, endometrium, 
cervix, vagina, and endometrial stroma [12] 

Nucleic acid  
(ss RNA) Virus [23]

TLR 9 Constitutive expression in epithelial cells of fallopian tubes, endometrium, 
cervix, vagina, and endometrial stroma [12] 

Nucleic acid (unmethylated deoxytidyl-phosphate-
deoxyguanosine components of both bacterial and 
viral genomes) 

Bacteria and 
viruses [90]

TLR 10  Constitutive expression in fallopian tubes, human NK cells; possibly in 
endometrial epithelia and stroma [12,91] Ligand unknown Recognition 

unknown [12]
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environment has an ongoing need to appropriately respond to 
pathogens yet avoid a continual immune response to commensal 
organisms which would result in chronic inflammation. TLRs , with 
their specific ligand recognition across a wide variety of epithelial and 
immune cells provide a unique and diverse mechanism for pathogen 
recognition, allowing cells to recognize a wide range of MAMPs and 
create an immunological tolerance of commensal organisms in the 
lower genital tract but a nearly absolute intolerance of commensal flora 
in the endometrium and Fallopian tubes, thereby keeping the uterine 
environment sterile and avoiding immune responses which would 
jeopardize reproductive function [12]. 

The function of other intracytoplasmic PRRs, NOD-like receptors 
(NLRs), and RIG-I-like receptors (RLRs) remain to be characterized in 
the female genital tract. 

Mucus

Apical epithelial cells also produce a hydrophilic layer of 
glycoprotein called glycocalyx that hydrates the luminal surface and 
covers it with a mucus blanket [1,11]. This mucus acts as a protective 
barrier, not only blocking the spread of microbes from the vagina into 
the endometrial cavity, but also by concentrating a variety of pathogen-
fighting products [32]. Commensal organisms often use “hold fast” 
mechanisms that operate well in viscous fluids in order to remain in 
the tissue surface ecosystem; successful pathogens find ways to disrupt 
the mucus blanket and gain access to the epithelial cell surface [33]. 

One property of the mucus layer that contributes to defense is the 
ability to maintain an undisturbed layer of mucus at epithelial surface, 
even under provocation such as copulation [34]. Viscoelasticity 
prevents nearly all bacteria from reaching the epithelial surface, 
although some small viruses move readily through [34]. The glycocalyx, 
a highly viscous layer composed of cell-surface mucins anchored in the 
cell membrane and combined with secreted mucin fibers, is packed 
more closely and forms a final imposing barrier to prevent pathogen 
adherence [34]. 

The thickness of the mucus blanket is determined by the balance 
between the rate of secretion and rate of degradation and shedding. The 
gastrointestinal (GI)-tract mucus blanket varies between 50 and 450 µm 
in thickness [34]. Most foreign particulates, including conventional 
particle-based drug delivery systems, are efficiently trapped in human 
mucus layers by stearic obstruction and/or adhesion. Bacteria have 
great difficulty in accessing mucus-covered tissues, especially if the 
mucus blanket is thick and is moving at a considerable speed across the 
tissue surface [34]. 

Cervical mucus provides a physical barrier by creating a concrete 
interface between the internal and external environment, serving as 
the outermost fortification against foreign pathogens, toxins, and 
environmental particles [18]. Mucus contains largely water and 
glycoproteins called mucins [11] which create a heterogeneous mesh 
network of cross-linked bundles and entangled mucin fibers [18] in a 
watery interstitial fluid [35]. Though long believed to provide primarily 
a steric barrier, it has been recently recognized that mucus actually 
contains pores much larger than the diameter of most viral pathogens 
(pores as big as 1800  nm in diameter versus 100 to 200  nm for the 
virus particle) [35], with entrapment of the potential pathogens more a 
function of microadhesion than steric obstruction [35]. Entrapment by 
microadhesion provides rapid selective passage of some proteins and 
particles [18]. The capacity of bacteria to degrade mucin molecules is a 
substantial predictor of its invasive potential [35]. 

The mucus layer is continually secreted and shed [35], and most 
of the time is about 2000 times more viscous than water. As ovulation 
approaches each month, however, its viscosity decreases by about 
95% [18], a substantial modulation of the cervicovaginal environment 
reflecting its hormonal control [36].  

Commensal microflora

A primary component of the vaginal fluid are commensal 
microorganisms [17]. The microflora of most women is dominated 
by Lactobacilli or other acid producers; other common commensals 
include Gardnerella vaginalis, coagulase-negative Staphylococci, 
Enterococcus spp, Ureaplasma urealyticum, and Escherichia  coli [37]. 
The presence of commensal microflora is known to have inhibitory 
effects with regard to significant growth of non-commensal organisms. 
This can be traced to at least four aspects of commensal populations: 
production of an acidic vaginal milieu, production of hydrogen 
peroxide, competition by commensal bacterial for adherence to the 
vaginal epithelia and production of antimicrobial products.

During the reproductive years, desquamated vaginal epithelial 
cells release glycogen which is commonly degraded by Lactobacillus, 
creating an acidic milieu which acts to restrict the growth of pathogenic 
microorganisms [38]. Lactobacilli metabolize glycogen, released 
by vaginal epithelial cells, into lactic acid, which in turn renders 
vaginal fluid acidic (pH  3.5 to 4.7) [11]. Lactic acid and low pH of 
vaginal fluid has been shown to exert selective antimicrobial activity 
against nonresident species of bacteria while sparing the commensal 
microbiota [39]. It was also observed that acidic cervicovaginal mucus 
(CVM) (acidified to approximately pH  4 by lactic acid produced 
continuously by anaerobic metabolism of Lactobacilli) trapped human 
immunodeficiency virus (HIV) while neutral CVM did not [40]. The 
trapping of HIV particles by mucoadhesion was also shown to be 
specifically associated with lactic acid [40]. The acidic milieu common 
to the vaginal vault of the adult female is most commonly attributed to 
the presence of Lactobacillus acidophilus. 

For a long time, acidification of the vaginal vault by Lactobacillus 
and other acid-producing microbes was believed to be main effector 
of vaginal immunity. Lactic acid, however, is not produced only by 
Lactobacilli but also by vaginal mucosa [41], a significant source of 
lactic acid in the vaginal fluid [17]. There is no correlation between 
the number of Lactobacilli present and the pH of the vagina, which is 
not noticeably affected when Lactobacillus is absent in any significant 
numbers [17]. In addition, the vaginal vault of the newborn female, 
while sterile, contains substantial lactate and is acidic [42]. 

In addition, the use of non culture -dependent gene amplification 
techniques capable of producing molecular identification of component 
species has revealed that the traditional view of L.  acidophilus as 
the obligatory foundation of an acidic vaginal environment is an 
oversimplification. Recent molecular studies have demonstrated 
that other Lactobacillus species, including L.  crispatus, L.  gasseri, 
L.  iners, L.  gallinarum and L vaginalis, are capable of providing a 
vaginal environment rich in lactic acid as well. In addition, other 
acid-producing species have been identified in some women lacking 
a dominance of Lactobacilli, particularly Atopobium, Megasphaera, 
and Leptotrichia, which are also associated with an acidic vaginal fluid 
[8,13,14].

Some have suggested that hydrogen peroxide production by 
Lactobacillus species is the primary effector of acidity in the vagina. 
Hydrogen peroxide (H2O2) is a broad-spectrum disinfectant and 
cervicovaginal fluid (CVF) is known to contain myeloperoxidase that 
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enhances pathogen inactivation by H2O2 [43]. Women with vaginal 
microbiota predominantly colonized with H2O2-producing lactobacilli 
may be less likely to be infected by a number of nonresident pathogens, 
including HIV-1, herpes simplex virus-2 (HSV-2), Trichomonas 
vaginalis, Gardnerella vaginalis, and Gram-negative microorganisms 
associated with bacterial vaginosis (BV) [43]. In fact, the incidence 
of BV was observed by multiple authors to be inversely related to 
colonization by H2O2-producing bacteria [44-47]. 

Hydrogen peroxide-producing lactobacilli have also been shown to 
be specifically associated with homeostasis of the vaginal mucosa [37]. 
Biological concentrations of H2O2 measured in vaginal fluid are toxic to 
many nonresident microbiota, which suggests these Lactobacilli may be 
more beneficial to the host than Lactobacilli that do not generate H2O2. 
However, the above studies were performed using in vitro cultures. A 
recent study has demonstrated that CVF or semen inactivates H2O2 
bringing into question whether it has any physiological role in the 
female genital tract [43]. 

Lactobacillus spp. have also been shown to compete for adherence 
to the vaginal epithelium, thereby interfering with colonization by 
pathogenic organisms [48]. Finally, Lactobacilli are also known to 
produce bacteriocins, broad-spectrum antimicrobial peptides [49]. 

Vaginal secretions

The vaginal fluid, secreted at about 2 mL a day [17], participates 
in mechanical defense of the mucosal surface as secretions continually 
wash pathogens toward the vaginal opening. Vaginal secretions also 
trap potential pathogens [17]. The vaginal fluid contains epithelial cells 
and stromal cells, as well as immune cells that migrate into the uterus, 
cervix, and vagina [50]. It is also replete with antibodies. Immunoglobin 
A (IgA) and IgG are produced by local B cells or transduced into the 
vaginal fluid from the systemic circulation [20]. Secretory IgA (sIgA) is 
produced by plasma cells adjacent to submucosal glands [11]. 

The vaginal fluid also contains mucus as well as fluids from 
the endometrium, Fallopian tubes, and vestibular glands [51]. 
Concentrations of vaginal fluid components vary depending on sexual 
stimulation and the presence or absence of secretory inducers [52]. 
There are also hormonal influences on vaginal secretions, as estrogen 
stimulates the glycogen-rich intermediate cell layer of the mucosa 
which has the greatest metabolic and secretory activity [17], including 
variations in the numbers of exfoliated cells [52]. 

There are a wide variety of organic molecules in the vaginal 
secretions. Lactic acid is a main component, but the vaginal fluid 
also contains multiple aliphatic acids, alcohols, glycols, and aromatic 
compounds [53], as well as urea and at least 339 proteins [54], many of 
which are the products of the innate and adaptive immunity systems in 
the vaginal environment. 

Neutrophils, macrophages, and NK cells contribute numerous 
defense effector molecules, including cathelicidin, TLKs, calprotection, 
defnesisns, and SLP1 [11,12,50] Epithelial cells, when confronted by 
a pathogenic invader, secrete a variety of defense-effector molecules 
[32]. Cervicovaginal epithelial cells secrete numerous cytokines, 
chemokines, and other peptides which, with other components of the 
cervicovaginal milieu, comprise the vaginal fluid.  It is now known that 
the vaginal secretions contain numerous antimicrobial substances, such 
as defensins, cathelicidin, lactoferrin, lysozyme, calprotectin, elafin, 
and secretory leukoprotease inhibitor (SLPI), and chemokines secreted 
from serous cells in submucosal glands [11], whose contributions to 
cervicovaginal immunity are only recently being understood. 

Antimicrobial molecules

These cationic peptides of innate immunity are slowly being 
recognized as the principal effector molecules of cervicovaginal 
immunity. Most antimicrobial peptides and proteins are broad-
spectrum microbicides that target Gram-positive and Gram-negative 
bacteria as well as fungi and some enveloped viruses by a variety of 
different mechanisms [55]; there is evidence that these secretory 
products may help regulate both innate and adaptive immunity 
by acting as both signal molecules and effectors [32]. Although a 
plethora of antimicrobial products are produced by the innate immune 
constituents in the cervical-vaginal tract, they have a tendency to 
share several chemical properties, including amphipathicity (spatial 
separation of polar and nonpolar residues), as well as cationicity 
(maintenance of a positive charge at physiological pH), facilitating 
insertion into microbial membranes. Thus, they appear to play multiple 
roles in host defense [11]. 

Antimicrobial peptides are constitutively expressed by epithelial 
cells and regulated by various inflammatory mediators and bacterial 
products [32]. Epithelial cells and granulocytes synthesize additional 
antimicrobial peptides [56]. Epithelial cells produce functional 
antimicrobials; granulocytes in early stages of differentiation produce 
antimicrobials which are packaged into granules, with antimicrobials 
later released during activation [57]. The primary antimicrobial 
components of innate immunity are discussed briefly below and 
elaborated in more detail in Table 4.

Defensins are an important component of innate immunity at the 
mucosal surface in the lower genital tract. They are small, positively 
charged peptides that bind to the negatively charged bacterial surface 
and disrupt bacterial membranes resulting in lysis [58]. Defensins 
are broad spectrum antimicrobials, with efficacy against both Gram-
negative and Gram-positive bacteria, as well as fungi, protozoa. and 
enveloped viruses and contain six cysteine residues forming three 
sulfide bridges [1]. 

Human alpha-defensins (HNP  1-4) are produced by neutrophils 
[59], while alpha human defensins (HD) HD 5 and 6 are expressed by 
epithelial cells of the female genital tract [56,59]. Human beta defensins, 
are produced by various epithelial cells of the female reproductive 
tract [56,60]; some constitutively, some are induced by microbial 
components or by pro-inflammatory cytokines [32]. 

Secretory leukoprotease inhibitor is produced by macrophages and 
epithelial cells and inhibits proteolytic activity of neutrophil elastase, 
cathepsin G, trypsin and chymotrypsin and also exhibits antimicrobial 
activity [32]. High levels of SLPI in vaginal fluid have been associated 
with reduced rates of perinatal HIV‑1 transmission [61]; low levels are 
associated with the presence of genital tract infections [62]. 

Mannose binding lectin (MBL) recognizes carbohydrate 
patterns on the surface of a variety of pathogenic microorganisms, 
including bacteria, viruses, protozoa and fungi. Binding of MBL to a 
microorganism results in activation of the complement system as well 
as opsonization [63]. 

Elafin is expressed by epithelial cells in the CVM and inhibits 
activity of neutrophil elastase and proteinase  3 (PRTN3) [32].  
Cathelicidins (LL‑37) are components of neutrophils, but are also 
found in various squamous epithelia as well as keratinocytes in 
inflamed skin (inflammatory mediators implicated as the regulatory 
of LL‑37 expression [64]. A specific cathelicidin LL‑37, found in the 
vaginal fluid, is the end result of processing induced by the act of sexual 
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intercourse and is characterized by a broad spectrum of activity against 
both bacteria and fungi [11]. 

Cystatins are inhibitors of microbial cysteine proteases [65]. 
Cystatins A, C, and S have also been observed to have antimicrobial 
activity against bacteria and viruses [32]. 

Calprotectin is a heterodimeric protein component of neutrophils, 
monocytes and keratinocytes, also known as leukocyte protein L1 
and calgranulin. At biological concentrations calprotectin inhibits the 
growth of fungi and bacteria in vitro by sequestering zinc [11]. 

Lysozyme cleaves the bonds in peptidoglycan, a molecules 
ubiquitous in microbial cell walls, allowing it to disrupt microbial 
membranes. It may act in synergy with other antimicrobial components 
of epithelia secretions [11]. 

Lactoferrin is an abundant component of some epithelia as well 
as neutrophil granules which eliminate microbes directly as well as by 
sequestration of iron [11]. 

Virtually all of the secretory products of the innate immune system 
are considered to be estrogen dependent. Menopause, with its declining 
levels of estrogen, is characterized by a parallel decline in the levels of 
secretory products in the vaginal fluid [3]. 

Discussion
Innate immunity in the female reproductive tract is of much current 

interest as a fascinating and interconnected array of multifunctional 
components of immunity are being revealed. The abundance and 
diversity of antimicrobial factors in the vaginal milieu would suggest 
a synergistic effect. Products of both host cells as well as the resident 
microflora, each molecule contributes a highly specific immunological 
function. As a family of immune effectors, however, together the 
molecules produce a formidable, barrier. An intact mucosal epithelium, 
for example, in conjunction with innate immune mechanisms and 
adaptive immune functions prevents 99% of HIV exposures from 
producing infection--a success factor far more impressive than any 
HIV vaccine currently in production [66].

The highly developed innate immune complex in the unique CVM, 
in addition, permits preservation of immune surveillance and anti-
pathogen functions while maintaining a favorable environment for 
reproduction. 

Epithelial cells, responding to both estrogen and the multiple 
effect or molecules that are simultaneously stimulated by estrogen, 
enable bidirectional communication between epithelial cells that 
effectively regulate both reproductive and immune function in order 

HBD= human beta defensin; hCAP-18 = human cationic antimicrobial protein; HD5 = human alpha defensin 5; HIV = human immunodeficiency virus; HPN = human alpha 
defensin; IL‑1 = Interleukin-1; MBL = mannose binding lectin; SLPI = secretory leukocyte protease inhibitor; TNF = tumor necrosis factor

Table 4: Defense Effector Molecules in Innate Immunity.

Effector Molecule Source Activity Target Organisms

Lysozyme 
13 µg/mL in vaginal fluid, 1 mg/
mL in mucus plug [92]

Secreted by serous cells in 
submucosal glands [11]  

Cleaves bonds in peptidoglycan component of cell walls, 
cationic disruption of microbial membranes [93]

Gram-negative bacteria [93] 
Weak at normal concentrations 
against bacteria, some antiviral (HIV) 
[94]

Lactoferrin 
1 µg/mL in vaginal fluid, 100 µg/
mL in cervical plug [92] 

Secreted by serous cells in 
submucosal glands [11]* 

Sequesters iron, also disrupts microbial membranes [11] 
Inhibits cellular fusion and entry by virus [95] 

Gram negative bacteria [93] , virus 
[95] 

Calprotectin 
34 µg/mL [11]

Component of neutrophils, monocytes 
and keratinocytes [95]

Sequesters zinc [11] Inhibits growth of fungi and yeast [96]

Human Alpha Defensins 
HPN 1,2,3,4 

about 2 µg/mL [59] 

Synthesized in bone marrow [97] 
Comprise contents of phagocytic vacuoles that effect 
microbicidal activity [98]
increase the production of TNF and IL-1

Bacteria, fungi, viruses [11] 

5 HD5 
10 to 40 ng/mL

Columnar epithelium of endocervix 
[99]

Binds electrostatically to negatively charged microbial 
particle, forming pores in cell membrane and eventually 
causing lysis [100] 

Bacteria, fungi, viruses [11] 

Human Beta Defensins

vaginal epithelial cells leukocytes [11] 
HBD‑1 is produced constitutively in 
mucosa [11] 
Human defensins HBD2 and 3 are 
induced at inflamed sites [11]    

Antimicrobial activity, inhibition of HIV-infectivity of 
immunocompetent cells, chemoattraction of T cells 
immature dendritic cells B cells neutrophils and 
macrophages [101,102]

Gram-positive or Gram- negative 
bacteria, mycobacteria. yeast, 
enveloped viruses viral (in vitro) [103]

SLPI
10 to 100 µg/mL in vaginal 
secretions, as high as 1000 µg/
mL in cervical mucus plug [11]    

Found in epithelial secretions, also 
produced by macrophages [11] 

Blocks action of hostile enzymes released by invading 
organisms [3]  Suppresses central transcription factor of 
inflammatory response [104]

Bacteria and fungi  (weak at normal 
concentrations) [11] 
 Antiviral (HIV-1) [61]

Surfactin Protein A In vaginal secretions [105,106]

Facilitates phagocytosis of microbes, increases 
chemotaxis, increases oxidative burst by phagocytes, 
modulates pro- inflammatory cytokine production by 
immune cells [105-107]

Bacteria, viruses [105,106]

Surfactin Protein D In vaginal secretions [108] 
Increases permeability of bacterial cell membranes [107]
  stimulates oxygen radical release, contributing to 
destruction of virus [109] 

Bacteria [107], viruses [108]

MBL Transudate from liver Facilitates complement activation and opsonization by 
binding to pathogenic microbes [63]

Elafin Epithelial cells Antimicrobial , inhibits inflammation-related tissue 
damage by blocking elastase [3] 

Cathelicidin (LL-37) 
1 µg/mL[11] Components of neutrophils[11] 

Postcoital processing from hCAP18 precursor to 
functional form, targeting specifically microbes which 
may have been introduced by intercourse [110]

Bacteria and fungi [11] 
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to maintain the delicate balance between immunity and reproduction, 
between pathogenic and commensal microorganisms and sperm and 
the developing fetus [20]. Further understanding of the regulation of 
expression and activity of the multitude of microbial peptides that 
make up a significant part of innate immunity in the lower genital tract 
will facilitate strategies to further improve female reproductive tract 
health.
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